3,144 research outputs found

    Generalized Fock spaces and the Stirling numbers

    Get PDF
    The Bargmann-Fock-Segal space plays an important role in mathematical physics, and has been extended into a number of directions. In the present paper we imbed this space into a Gelfand triple. The spaces forming the Fr\'echet part (i.e. the space of test functions) of the triple are characterized both in a geometric way and in terms of the adjoint of multiplication by the complex variable, using the Stirling numbers of the second kind. The dual of the space of test functions has a topological algebra structure, of the kind introduced and studied by the first named author and G. Salomon.Comment: revised versio

    An advanced web query interface for biological databases

    Get PDF
    Although most web-based biological databases (DBs) offer some type of web-based form to allow users to author DB queries, these query forms are quite restricted in the complexity of DB queries that they can formulate. They can typically query only one DB, and can query only a single type of object at a time (e.g. genes) with no possible interaction between the objects—that is, in SQL parlance, no joins are allowed between DB objects. Writing precise queries against biological DBs is usually left to a programmer skillful enough in complex DB query languages like SQL. We present a web interface for building precise queries for biological DBs that can construct much more precise queries than most web-based query forms, yet that is user friendly enough to be used by biologists. It supports queries containing multiple conditions, and connecting multiple object types without using the join concept, which is unintuitive to biologists. This interactive web interface is called the Structured Advanced Query Page (SAQP). Users interactively build up a wide range of query constructs. Interactive documentation within the SAQP describes the schema of the queried DBs. The SAQP is based on BioVelo, a query language based on list comprehension. The SAQP is part of the Pathway Tools software and is available as part of several bioinformatics web sites powered by Pathway Tools, including the BioCyc.org site that contains more than 500 Pathway/Genome DBs

    Quantum symmetries and exceptional collections

    Full text link
    We study the interplay between discrete quantum symmetries at certain points in the moduli space of Calabi-Yau compactifications, and the associated identities that the geometric realization of D-brane monodromies must satisfy. We show that in a wide class of examples, both local and compact, the monodromy identities in question always follow from a single mathematical statement. One of the simplest examples is the Z_5 symmetry at the Gepner point of the quintic, and the associated D-brane monodromy identity

    Approximately coloring graphs without long induced paths

    Get PDF
    It is an open problem whether the 3-coloring problem can be solved in polynomial time in the class of graphs that do not contain an induced path on tt vertices, for fixed tt. We propose an algorithm that, given a 3-colorable graph without an induced path on tt vertices, computes a coloring with max⁡{5,2⌈t−12⌉−2}\max\{5,2\lceil{\frac{t-1}{2}}\rceil-2\} many colors. If the input graph is triangle-free, we only need max⁡{4,⌈t−12⌉+1}\max\{4,\lceil{\frac{t-1}{2}}\rceil+1\} many colors. The running time of our algorithm is O((3t−2+t2)m+n)O((3^{t-2}+t^2)m+n) if the input graph has nn vertices and mm edges

    Locally Optimal Load Balancing

    Full text link
    This work studies distributed algorithms for locally optimal load-balancing: We are given a graph of maximum degree Δ\Delta, and each node has up to LL units of load. The task is to distribute the load more evenly so that the loads of adjacent nodes differ by at most 11. If the graph is a path (Δ=2\Delta = 2), it is easy to solve the fractional version of the problem in O(L)O(L) communication rounds, independently of the number of nodes. We show that this is tight, and we show that it is possible to solve also the discrete version of the problem in O(L)O(L) rounds in paths. For the general case (Δ>2\Delta > 2), we show that fractional load balancing can be solved in poly⁡(L,Δ)\operatorname{poly}(L,\Delta) rounds and discrete load balancing in f(L,Δ)f(L,\Delta) rounds for some function ff, independently of the number of nodes.Comment: 19 pages, 11 figure

    Longest Common Extensions in Sublinear Space

    Get PDF
    The longest common extension problem (LCE problem) is to construct a data structure for an input string TT of length nn that supports LCE(i,j)(i,j) queries. Such a query returns the length of the longest common prefix of the suffixes starting at positions ii and jj in TT. This classic problem has a well-known solution that uses O(n)O(n) space and O(1)O(1) query time. In this paper we show that for any trade-off parameter 1≀τ≀n1 \leq \tau \leq n, the problem can be solved in O(nτ)O(\frac{n}{\tau}) space and O(τ)O(\tau) query time. This significantly improves the previously best known time-space trade-offs, and almost matches the best known time-space product lower bound.Comment: An extended abstract of this paper has been accepted to CPM 201

    The Combinatorial World (of Auctions) According to GARP

    Full text link
    Revealed preference techniques are used to test whether a data set is compatible with rational behaviour. They are also incorporated as constraints in mechanism design to encourage truthful behaviour in applications such as combinatorial auctions. In the auction setting, we present an efficient combinatorial algorithm to find a virtual valuation function with the optimal (additive) rationality guarantee. Moreover, we show that there exists such a valuation function that both is individually rational and is minimum (that is, it is component-wise dominated by any other individually rational, virtual valuation function that approximately fits the data). Similarly, given upper bound constraints on the valuation function, we show how to fit the maximum virtual valuation function with the optimal additive rationality guarantee. In practice, revealed preference bidding constraints are very demanding. We explain how approximate rationality can be used to create relaxed revealed preference constraints in an auction. We then show how combinatorial methods can be used to implement these relaxed constraints. Worst/best-case welfare guarantees that result from the use of such mechanisms can be quantified via the minimum/maximum virtual valuation function

    Amplituhedron meets Jeffrey-Kirwan Residue

    Get PDF
    The tree amplituhedra A^(m)_n,k are mathematical objects generalising the notion of polytopes into the Grassmannian. Proposed for m=4 as a geometric construction encoding tree-level scattering amplitudes in planar N=4 super Yang-Mills theory, they are mathematically interesting for any m. In this paper we strengthen the relation between scattering amplitudes and geometry by linking the amplituhedron to the Jeffrey-Kirwan residue, a powerful concept in symplectic and algebraic geometry. We focus on a particular class of amplituhedra in any dimension, namely cyclic polytopes, and their even-dimensional conjugates. We show how the Jeffrey-Kirwan residue prescription allows to extract the correct amplituhedron volume functions in all these cases. Notably, this also naturally exposes the rich combinatorial and geometric structures of amplituhedra, such as their regular triangulations.Peer reviewedFinal Accepted Versio

    Exceptional collections and D-branes probing toric singularities

    Full text link
    We demonstrate that a strongly exceptional collection on a singular toric surface can be used to derive the gauge theory on a stack of D3-branes probing the Calabi-Yau singularity caused by the surface shrinking to zero size. A strongly exceptional collection, i.e., an ordered set of sheaves satisfying special mapping properties, gives a convenient basis of D-branes. We find such collections and analyze the gauge theories for weighted projective spaces, and many of the Y^{p,q} and L^{p,q,r} spaces. In particular, we prove the strong exceptionality for all p in the Y^{p,p-1} case, and similarly for the Y^{p,p-2r} case.Comment: 49 pages, 6 figures; v2 refs added; v3 published versio

    Fluctuations in the Site Disordered Traveling Salesman Problem

    Full text link
    We extend a previous statistical mechanical treatment of the traveling salesman problem by defining a discrete "site disordered'' problem in which fluctuations about saddle points can be computed. The results clarify the basis of our original treatment, and illuminate but do not resolve the difficulties of taking the zero temperature limit to obtain minimal path lengths.Comment: 17 pages, 3 eps figures, revte
    • 

    corecore